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FOREWORD

This report, which presents the experimenta! and theoretical results of
a program of supersonic flutter testing, was prepared by the Aeroelastic and
Structures Research Laboratory, Massachusetts Institute of Technology,
Cambridge 39, Massachusetts for the Aircraft Laboratory, Wright Air Development
Center, Wright-Patterson Air Force Base, Ohio. The work was performed at the
MIT under the direction of Professor R. L. Halfman, and the project was
supervised by Mr. J. F. McCarthy, Jr. The research and development work was
accomp | ished under Air Force Contract No. AF 33(038)-22965, Project No. 1370,
(Unclassified Title) MAeroelasticity, Vibration and Noise," and Task No.
13474, (Unclassified Title) "Three-Dimensional Supersonic Flutter Model Tests
at Mach Number |.5". Mr. Niles R. Hoffman of the Dynamics Branch, Aircraft
Laboratory, is task engineer. This task covers a continuing effort on flutter
research at supersonic speeds. Research was started in March 1951, The test
data presented in this report was obtained during the period from December
1952 to December 1984, This is Part |i of a report to be issued in three
separate parts. Part | of this report, WADC TR B4~113, (Unclassified Title)
"Three-Dimensional Supersonic Flutter Model Tests Near Mach Number 1.5, Part |.
Model Design and Testing Techniques," was issued in December 1955. Technical
Report WADC TR BU-114, "(Unclassitied Title)™ A Variable Mach Number Supersonic
Test Section for Flutter Research™ was issued in December {954,

The authors are indebted to Mr. O. Vailin, and Mr. C. Fail for their
help in the model construction and in keeping the wind tunnel in operation; to
Mr. G. M. Falla for the photograph; to Messrs. A. Heller and H. Hagerup for
their help in the caiculaiions; to Messrs. J. R. Friery, G. Anitole, and
W. Marchant for their help in preparing the tables and figures; and to Miss
K. Roberts and Mrs. B. Marks for their help in typing this report.

This document is classified CONFIDENTIAL in its entirety (excepting the
title) because results of supersonic flutter tests generally indicate limiting

performance capabilities of present and future military aircraft and have
application in the form of design criteria.
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ABSTRACT

‘Three-dimensional supersonic flutter tests were made on
over 75 semi-span models in the MIT blowdown wind tunnel facil-
ity. The testing technique involved injecting the model into a
stable region of flow and decreasing the Mach number until in-
stability occurred. Experimental flutter stability boundaries
are defined for bare straight, swept and delta-wing planforms
in the Mach number range, 1.3 - 2.0. Exploratory tests were
also made on wings with ailerons for all planforms, and on
straight and swept wings with tip tanks for both cantilever and
free-to-roll root conditions. Except for absolute stiffness,
the dimensionless flutter parameters were chosen so as to be
typical of present-day high-speed aircraft.

Extensive theoretical calculations were made on the
straight-wing planform using two-dimensional supersonic oscilla-
tory aerodynamic coefficients and three-dimensional structural
properties. The qualitative prediction by the theory of the
effect of various parameter changes  generally agrees with ex-
periment, but the quantitative prediction is generally poor.

The theoretical calculations are unconservative in that they
predict smaller regions of instability than those obtained ex-
perimentally at Mach numbers above 1.4, No theoretical calcula-

tions were made for the swept and delta planforms.
Comparison of the experimental data with the results of
other flutter tests shows that in the Mach number range of 0.6

to 2.0 for wings with parameters similar to those tested the

following conclusions may be drawn:

WADC TR 54-113, Part II iii
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1). At constant altitude, the critical flutter region
for straight wings lies at about M ¥ 1.7

2). At constant altitude, the critical flutter region
for swept wings lies in the transonic regime at
about M ¥ 1.1

3). At constant altitude, the critical flutter region
for 60° delta wings lies at the highest Mach number
tested, M ¢ 2.0

L), At constant dynamic pressure, the critical flutter
region lies in the transonic regime close to
M#¥ 1.0, for all the straight, swept, and delta
planforms tested

A complete tabulation of the design properties for all
the models tested is presented along with the results of static,
vibration, and flutter tests.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER: ;iz

DANIEL D. McKEE
Colonel, USAF
Chief, Aircraft Laboratory
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SECTION I

INTRODUCTION

The phenomenon of flutter, the self-excited oscillation of
an elastic structure in an airstream, appeared early in the de-
velopment of aircraft. At first, designeré could apply only
crude corrective measures, and it was not until the early 1930's
that aeronautical scientists were able to fashion promising theo-
retical approaches to the problem of flutter. Although experi-
mental work lagged behind the theoretical attack, the flutter
problem in incompressible flow had become quite tractable by the
end of the Second World War. Both the theoretical and experi-
mental approaches were well developed and understood. Until the
advent of transonic and supersonic aircraft, these techniques
were adequate for the airplane designer.

Unfortunately, the trend towards higher speeds, increased
structural flexibility and lower aspect-ratio lifting surfaces as
well as the growing use of large external stores so aggravate the
flutter problem that it is now often a primary design considera-
tion rather than an occurrence that can be remedied fairly easily.
Because of the questionable reliability of existing methods of
flutter analysis in the high-speed range, the airpiane designer
calls upon the experimentalist to provide data that are immedi-
ately useful and that can be used to confirm theory. A reason-
able amount of experimental flutter data exists, but attempts to
correlate this data with calculations made with incompressible
unsteady aerodynamic coefficients have not been too successful
(see Ref. 4).

In the low supersonic speed range, M = 1.2 to M = 2.0,
basic flutter theory may be used successfully with linearized

Manuscript released by the authors December 1955 for publication
as a WADC Technical Report.
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aerodynamic forces provided the perturbation velocities on the
system to be studied are small compared to the free stream
velocity. Flutter analyses using two-dimensional supersonic
aerodynamic coefficients (Ref. 7) have been done for some time,
but there has been little confirmation of the theory with ex-
periment over a range of Mach numbers and for dimensional para-
meters which are typical of present-day aircraft, especially in
the case of the mass ratio, which has generally been much higher
for the models tested than that encountered in practice

(Refs. 8-11).

Experimental investigations of flutter in the supersonic
speed range at first glance appear to be as difficult as those
in the transonic range. Models mounted on rockets, bombs, or
sleds must go through the transonic range before encountering
superscnic speeds so that the same problems of complexity and
expense (mounting, data recording, expendable models, etc.) are
still present. For tests conducted in the wind tunnel, there
are the large-power requirements for continuous-flow tunnels of
reasonable size, the aerodynamic problems of obtaining uniform
flow in the test section, and the potential damage that could
be inflicted on the testing facility by models which are lost.
For supersonic flow, the Mach number in the test section is a
function only of the geometry of the nozzle, so it might appear
that many nozzles of fixed geometry would have to be used to get
useful data. The model designer is again confronted with the
problem of building efficient structure into thin wings in
order to obtain the very high natural frequencies required when
Mach number must be simulated (see Reference 12).

Some of the complexity and expense of testing flutter
models in the low supersonic speed range was eliminated by de-
signing the facility described in Reference 13. Briefly, a
supersonic nozzle of variable geometry was built for installa-

WADC TR 54-113, Part II 2
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tion in a blowdown wind tunnel. 1t is of the asymmetric sliding-
block type, and the Mach number can be varied through the com-
plete range of the nozzle during a run (M=1.2 - 2.1) without any
change in the dimensions of the test section. The testing tech-
nique involves injection of the model into the airstream in
order to avoid destruction of the model by the violent starting
shock. Thus, the problems of large power, damage from broken
models, and testing at fixed Mach number were immediacely solved,
Also, the difficulty of obtaining low mass ratios is somewhat
alleviated because of the high air density in the test section,
which is characteristic of a blowdown wind tunnel. The approach-
es for designing, building, and testing inexpensive supersonic
flutter models with desired parameters are discussed in Refer-
ences 14-17.

The planforms shown in Figure 1.1 were chosen for investi-
gation (Ref. 18). These are typical of present-day high-speed
fighters and proposed supersonic bombers. Although most of the
work was done on the bare wings, some exploratory tests were
made on models with ailerons and, in the case of the straight
and swept wings, on models with tip tanks for both cantilever
and free-to-roll root conditions. The 10-inch root chord rep-
resents the model of maximum size that can be tested in the
facility without shock interference (see Reference 14), The
symmetrical double wedge airfoil section was used because of its
simplicity. The range of flutter parameters built into the
models are typical of current high-speed aircraft.

Theoretical flutter calculations were made only for the
straight-wing, since it was felt that two dimensional aerody-
namic coefficients could be used successfully for this planform.
No theoretical work was done on the swept or delta planforms
because the primary emphasis of the research program was on ex-
perimental results. However, enough theoretical work was done

WADC TR 54-113, Part II U
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on the straight wing so that the complete range of experimental
parameters was covered and a reasonable comparison between
theory and experiment could be made for this planform. The
theoretical trends exhibited by the straight wing were compared
with those obtained experimentally for the swept and delta wings,

In subsonic and low transonic flutter testing wings are
brought from a stable to an unstable region by increasing the
speed or Mach number. Figure 1.2, which shows a hypothetical
flutter boundary, demonstrates a peculiarity of supersonic flut-
ter testing. A wing is generally brought from a stable region
to an unstable region (see Reference 1l4) by decreasing the speed
or Mach number along a tunnel operating curve., From Fig. 1.2

FIGURE 1.2 HYPOTHETICAL FLUTTER BOUNDARY

it can also be seen that decreasing the region of instability
over the whole Mach number range will lower the Mach number for
flutter in the supersonic speed range and raise the Mach number
for flutter in the subsonic and low transonic speed range.
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These factsg explain some of the conclusions of Sections 3 and 4
that at first glance may appear unreasonable,

WADC TR 54-113, part II 6
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SECTION II

FORMULATION

The dimensionless answers which one hopes to obtain from
a flutter model test are the values of the Mach number, M, the
reduced frequency, k, and the frequency ratio, Z, at flutter and
the flutter mode shape. These dimensionless quantities can be
derived from basic flutter theory (see Reference 19 and Appendix
A.1) along with other parameters which define the physical prop-
erties of the lifting surface. For bare wings of reasonably
large aspect ratio, the physical properties evolve as dimension-
less parameters which must be defined at every spanwise station,

viz.,

b
planform
’Eo

mass distribution, %
(o

location of the chordwise center of gravity, x4

dimensionless moment of inertia in pitch, r

bending stiffness distribution, (g%)
o

torsional rigidity distribution, (%)
O

location of the elastic axis, a
For wings of low aspect ratio or for surfaces where chord-
wise deformations are appreciable, the concepts of bending stiff-

ness, torsional rigidity and elastic axis are not valid, and the
chordwise as well as the spanwise distributions of mass and stiff-

ness must be defined.
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For given distributions cf mass and stiffness, the model
has a discrete set of eigenfrequencies with associated eigen-

functions and a distinct set of influence coefficients. For both

models and full-scale airplanes, these latter parameters are rel-
atively easy to obtain experimentally compared to obtaining mass
and stiffness distributions, especially when the chordwise as
well as the spanwise variations must be considered. Therefore,
in the usual formulation of the flutter problem, natural fre-
quencies and mode shapes or matrices of influence coefficients
replace stiffness distributions. Through the years, flutter
engineers have become used to thinking of the flutter problem

in terms of natural frequencies and mode shapes'rather than in
terms of stiffnesses. The concept of attacking the problem with
matrices of influence coefficients is relatively new, since
lifting surfaces of low aspect ratio have only recently become
popular. The tendency is to treat this latter type of planform
in the same way, i.e., in terms of natural frequencies and mode
shapes when attacking the problem physically or when interpre-
ting results. This tendency is still valid since coupled fre-
quencies and mode shapes evolve as theoretical solutions to the
flutter equations at zero airspeed, even though the problem has
been formulated in terms of influence coefficients.

It is the intention of this report to adhere to the
classical concepts of natural frequencies and mode shapes and
elastic-axis location, rather than to consider matrices of in-
fluence coefficients or stiffness distributions., Valid criticism
may accompany the concept of an elastic axis for any of the plan-
forms considered because of sweep and low aspect ratio. Also,
in the interest of simplicity, all models were designed to have
identical spanwise distributions of mass and stiffness. The
former varies as the square of the chord, and the latter varies
as the fourth power of the chord. These distributions, which
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were accomplished by tapering all dimensions linearly from root
to tip, are typilcal of present-day aircraft. The absolute values
of bending and torsicnal stiffness are measured by the magnitude
of the first bending and the first torsional frequency, respec-
tively, and that of the mass by the value of the flow parameter,
Y . The models were designed to have constant values of
chordwise center-of-gravity location, dimensionless moment of
inertia in pitch and elastic-axis location at every spanwise
station. No attempt was made to design chordwise distributions
of mass or stiffness into the models although matrices of in-
fluence coefficients were measured in some cases.

With these simplifications, the parameters which were con-
sidered for each bare wing planform are:

mass ratio,
location of the chordwise center of gravity, x,
dimensionless moment of inertia in pitch, r

first torsional frequency, w«

Wy,

frequency ratio, e

location of the elastic axis, a.

The ranges of the values of these parameters were chosen to be
typical of present-day aircraft. By virtue of the design, the
quantities, m , X, , I., and a are constant at all spanwise
stations; the fréquencies w, and w, , are three-dimensional
structural properties, Natural frequencies higher than first
bending and first torsion were not considered separately in the
model design since their values are dictated by the choice of
the mass and the stiffness distributions already mentioned. We
also note that the mass and stiffness distributions determine
the values of the mode shapes associated with each natural fre-
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quency.

Other parameters which evolve from basic flutter theory
are: '

airfoil shape
structural-damping coefficients
Reynolds number

Prandtl number

ratio of specific heats.

For simplicity, the airfoil section was taken as a symmetrical
double wedge for all the models, since it is probably of second-
ary importance in the flutter problem, For the structural-damp-
ing coefficients, the correct order of magnitude was obtained
through discriminate choice of structural material, As high a
Reynolds number as possible was obtained by using as large a
scale model and as high a fluid density as practical with the
available facility (Reference 13). Control of the values of
Prandtl number and the ratio of specific heats was not consider-
ed since air was used as the testing medium,

For wings with control surfaces, additional parameters
evolve out of model theory (see Appendix A.l), viz.,

location of the aileron hinge line, ¢

chordwise location of the aileron center of graw
ity, xﬂ

dimensionless radius of gyration of the aileron
about its hinge line, g

frequency ratio, .5?1

ol
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Again, the problem has been formulated in terms .of mode shapes
and frequencies, and for the control surface, the stiffness
chordwigse is considered large with respect to the stiffness
spanwise. The values of c, X g and rg were made constant at
pach spanwise station in the model-design procedure.

For wings with tip tanks (see Appendix A.2) in the can-
tilever or free-to-roll condition, we must define the geometry
and mass of the tip tank in addition to the bare wing parameters
already considered:

Vr
volume, —
' 4l
o7
location, 5
mass, fI
m A
static unbalance, 5= =)
mb f
moment of inertia in pitch, IT
——
mb= L

moment of inertia in roll of the root support, Is

m{

These parameters have been non-dimensionalized in a somewhat
arbitrary fashion because of the simple theoretical model con-
sidered.

Having formulated the problem in terms of explicit para-
meters for all configurations, it now remains for us to devise a
scheme of model design whereby desired values of the parameters
can be obtained. Also, techniques of testing the models at zero
airspeed and in the wind tunnel must be developed to verify our
design values and to obtain the desired answers. Detailed con-
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sideration of model design and testing techniques are presented
in Reference 14, A cursory glance at the highlights, sufficient
for this report, is given in Appendix D.

Since the emphasis of the research program was on exper-
imental results, the theory was used primarily as a guide for
model design. Only the straight-wing planform was treated theo-
retically since it is most amenable to analysis. The calcula-
tions were based on three-dimensional structural properties and
two-dimensional supersonic aerodynamic forces since experience
has shown that a similar procedure gives reasonable results for
subsonic flutter below the transonic range. -Also, other more
complicated methods of analysis which are presently being de-
veloped, (e.g. Reference 20) were considered far too premature
to be used on the present program. Some calculations based on
Piston Theory were made because of its simplicity. In formulating
the theory, only those degrees of freedom which experience had
shown to be essential in the analysis were included. Thus, for
the bare-wing and cantilever tip-tank calculations, only first
bending and first torsion were included. For wings with control
surfaces, the aileron degree of freedom was added, and for wings
with freedom to roll, the rigid-body roll motion was added.

The choice of eigenvalues was such that most useful in-
formation for a given effort could be obtained from a model-
design viewpoint. For example, in the theoretical anal;sis of
the bare wing, the problem was set up so that the bending and
torsional frequenciés, which are measures of stiffness level were
obtained as results for each set of assumed conditions (fre-
quency and Mach number at flutter). In the analysis of wings
with ailerons and wings with tip tanks, the torsional frequency
along with the aileron frequency for the former and the tip-tank
static unBalance for the latter were chosen as uniknowns. This
choice of eigenvalues still allows for a comparison between
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theory and experiment so long as the complete range of experi-

mental parameters is covered.

The thecretical results are presented in terms of the
flutter coefficient, T£%E§ , rather than in terms of a velocity
ratio, as has been done in the past. This procedure eliminates
the necessity of treating velocity (v), size (b) and stiffness
level (Wax) as separate parameters., Also, this dimensionless
quantity evolves out of the theory (see Appendix C.1).
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SECTION III

PRESENTATION OF RESULTS

3.1 Bare Wings
3.1.1 Straight

In designing the bare straight-wing models, an attempt
was made to vary the first torsional frequency of the wing keep-
ing all other pertinent dimensionless parameters constant, viz.,

mass ratio,/M
location of chordwise center of gravity, x,

dimensionless mass moment of inertia in pitch,¥,

Wy,

frequency ratio,
WP

location of elastic axis, a

spanwise mass and stiffness distributions.

In this way, experimental curves of the flutter coefficient,
V¢
b, W

function of Mach number. These experimental curves could then

, and the reduced frequency, k, could be determined as a

be compared with those obtained by theory in order to test the
validity of the theory and, if necessary, aid in the development
of a criterion for torsional rigidity.

This choice of parametric variation was particularly
difficult to accomplish insofar as model design was concerned

because of the interdependence of the parameters and the re-
Wy
W
that some variations occurred in the parameters which were to

quirement that the frequency ratio, , be held constant, sv

be held constant. Control of the mass ratio,/ﬂk , was difficult
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because of the change in air density with Mach number and the
fact that the Mach number at flutter could not be accurately
predicted beforehand. The values of other mass parameters,
center-of-gravity location, c.g., and moment of inertia in pitch,
r, , as well as the spanwise distributiens of mass and stiff-
ness could be controlled accurately. Insofar as elastic axis is
concerned, there was some question as to how this concept should
be handled for-real wings. After some research late in the pro-
gram, it was decided that, based on classical flutter theory,

the elastic axis should be treated as the locus of shear centers
rather than as that point on the wing where bending and torsicn
is statically uncoupled, '"apparent" elastic axis (see Reference
21). Experiments showed that the locus of this latter point
varied slightly along the wing because of sweep and root effects.
Furthermore, accurate control of the locus of shear centers could
be maintained by careful construction of the models, since the
location of the shear center is a function of the position of
the structural elements of the model. Both measured '"apparent
elastic axis" and calculated locus of shear centers are tabu-
lated in Appendix D where available. Good control of the fre-
quency ratio, %%} , also evolved with experience., Careful
selection of balsa wood and realistic estimates of the effect of
glue were made late in the program. A detailed tabulation of

the parameters for all the models tested is given in Appendix D.

In order to determine the effects on flutter of those
parameters which were difficult to control accurately in the
models, theoretical straight wing studies were made varying
these parameters. Figure 3.1 presents a systematic variation of,

Wy,
Wy

frequency ratio,
mass ratio,/&t

elastic axis, a
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for fixed spanwise mass and stiffness distributions, fixed
moment of inertia in pitch and fixed chordwise center-of-gravity
location. Taper was taken into account in determining the aero-
dynamic forces. All the curves of Figure 3.1 were based on zero
structural damping. However, spot checks showed that inclusion
of a small amount of structural damping (g = 0.0l) in the analy-
sis did not alter the answers appreciably, probably because all
of the calculated caseg had reasonable amounts of positive static
unbalance. Two-dimensional aerodynamic coefficients and three-
dimensional structural properties were used in the theoretical
calculations. The detailed formulation of the theory is given
in Appendix A.l, and an example analysis is presented in Appen-
dix C.2. Theoretical results for values of frequency ratio,
;%r , other than those presented in Figure 3.1 can be obtain-
ed by cross-plotting the curves of Figure C.l1l. Because avail-
able tabulated values of the superscnic oscillatory aerodynamic
coefficients were limited (Ref. 7), portions of the curves of
Figure 3.1 could not be defined accurately. These doubtful

portions are presented as dashed lines.

Figure 3.1 shows that, in the range of practical inter-
est ( {f;;-s.E ), the theoretical stability boundaries are not
very sensitive tc changes in the parameters, mass ratio and
elastic-axis location (for the ranges considered) but do vary
somewhat with frequency ratio, ué%% . We also notice that the
trends are comparable to those to be expected from experience in
subsonic flow (Ref. 22), i.e., the region of instability in-

creases with,
decreasing mass ratio,/u

increasing distance between the elastic axis and

the center of gravity, xy

w

: . . )
increasing frequency ratio, —;~-
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The theoretical curves of Fig. 3.1 may be used to predict
the onset of flutter which will be given by the intersection of
an operating line and the flutter boundary. The operating line
for a model with a given set of mass and stiffness parameters de-
pends on the velocity- Mach number relationship of the environment
in which the model is tested. Velocity at a given Mach number is
a function of the ambient temperature only. Velocity versus Mach
number for extreme ranges of the atmosphere and of the facility
used for flutter testing on this program is given in Figure 3.2.
In the tunnel the stagnation temperature is roughly that of the
atmosphere, and at a given Mach number the static temperature, and
hence the speed of sound and velocity, is less than atmospheric in
accordance with isentropic flow relations. Figﬁre 3.2 shows
graphically the difference between the velocity- Mach number re-
lationship in the atmosphere and the wind tunnel. A given model
will then have a different operating line in the tunnel than it
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FIGURE 3.2 VELOCITY VERSUS MACH NUMBER FOR EXTREME RANGES OF

ATMOSPHERIC AND WIND TUNNEL CONDITIONS

WADC TR 54-113, Part II 23

CONFIDENTIAL




CONFIDENTIAL

has in the atmosphere. Figure 3.3, illustrates this point. It
shows the operating lines for a model in the wind tunnel and in the
standard atmosphere at sea level and at the tropopause. Since
these operating lines are not the same they intersect the flutter
boundary at different values of Mach number. It is also interest-
ing to note that if the flutter boundary is to be approached from
a stable region at either constant altitude in the atmosphere or in
the tunnel, it must be approached by decreasing the Mach number.

For all of the straight wing models tested on the present
program the theoretical Mach number of flutter has been determined
from cusves similar to Figure 3.3. The flutter Mach number has
been determined for conditicns in the tunnel and in the standard
atmosphere. The theoretical Mach numbers of flutter so determined
are compared with the flutter Mach number of the actual tests,
These results are given in Table 3.1.

An even more graphic comparison between theory and exper-
iment is given in Figure 3.4, All the legitimate experimental
flutter points were obtained by injecting the model into a stable
region and decreasing the Mach number until flutter occurred. All
the straight wings built on this program fluttered, and no single-
degree-of-freedom torsion flutter was encountered experimentally
(see Ref. 23, p. 6). The scatter of the data is small and most of
the deviations from the mean can be explained. The models which
fluttered during injection would have their marginally stable con-
dition at higher Mach number. These injection flutters generally
occurred at frequencies closer to the first torsional frequency
than would otherwise be expected. Models ST-1d and ST-1d-1 were
designed with elastic axes forward so that they had slightly high-
er values of the coefficient, E——- than the other models, veri-
fying the trend predicted by the theory Model ST-12 was a low-
density,}u$=30, wing designed to have a margin of safety against
flutter based on the test results of models with mass ratio on the
order of 65 and on.the theoretical effect of lowering the mass
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TABLE 3.1
MACH NUMBER AND FREQUENCY AT FLUTTER FOR STRAIGHT-WING PLANFORM, THEORY AND EXPERIMENT
Experiment Theory Stmitural-
Damping
Wind Tunnel Wind Tunnel Tropopause Sea Level Coefficient
Bare Wings in Theory
Model Mf O Mf We Mf we Mf Op
cps cps cps cps
ST-1 1.52 85.7 1.33 150 1.33 130 1.36 145 0
ST-1d 1.59 82.7 1.29 135 1.31 120 1.38 125 0
ST-1d-1] 1.52 86.2 1.35 150 1.35 135 1.41 140 0
ST-2% 1.71 | i10 1.39 115 1.39 95 1.44 g5 0
ST-4 1.52 93.7 1.32 165 1.33 140 1.37 145 0
ST-4-1] 1.30 98.4 1.33 170 1.33 145 1.37 145 0
§T-5 1.44 83.3 1.33 155 1.33 130 1.37 135 0
ST-5-1 | 1.47 89.5 1.35 150 1.35 130 1.38 135 0
ST-6 1.72 78.3 1.33 140 1.34 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>